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Abstract
This paper reviews the emergence of integrability in the context of the AdS/CFT
correspondence at an introductory level. In particular, we discuss how planar
N = 4 supersymmetric Yang–Mills theory and free string theory on AdS5× S5

can both be related to integrable systems in one spatial dimension. We
determine the spectrum of the model in the limit of long operators/strings.

PACS numbers: 11.25.Tq, 11.30.Ly

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The AdS/CFT correspondence [1] is a remarkable equivalence between two seemingly very
different types of theories. On one side of the correspondence we have N = 4 supersymmetric
Yang–Mills theory, which is a non-Abelian gauge theory living in flat four-dimensional
Minkowski space. On the other, we have IIB superstring theory on the ten-dimensional
spacetime AdS5 × S5 which in particular contains a massless spin-2 particle corresponding to
the graviton. How can two theories living in different dimensions with different fields content
be exactly equivalent? As we review below, some of the apparent differences are illusory and,
in particular, the global symmetry group of the two theories is actually the same. The answer
is also related to the fact that both theories have a dimensionless coupling constant which can
be varied continuously. In the case of the N = 4 theory, this is just the gauge coupling g2,
while for string theory on AdS5 × S5 it is the so-called ‘worldsheet coupling’, g2

σ ,

g−2
σ = (radius)2 × string tension.

The AdS/CFT correspondence involves the identification,

g2N ≡ g−4
σ .
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Thus, when gauge theory is weakly coupled the equivalent string theory is strongly coupled1

and vice versa. In general, we know very little about strongly coupled large-N gauge theory
(or strongly coupled string sigma models) and so it is very hard to test the predictions of the
correspondence against first-principles calculations.

Fortunately recent years have seen great progress in overcoming this obstacle. This
progress is largely based on the emergence of integrability on both sides of the correspondence.
We will define what we mean by integrability in a more precise way below, but for now it
can be thought of as a new, infinite-dimensional symmetry which emerges in certain limits
of gauge theory and string theory. In particular it entails the existence of an infinite tower of
hidden conserved charges in both theories. In explicit calculations it is often manifested by
the appearance of ‘special’ solvable models/equations. Two examples we will meet below
are the Heisenberg spin chain and the sine-Gordon equation.

These developments have already provided a strong indication that the theories on both
sides of correspondence are solvable in the planar limit2. They have also provided the first
examples of exact results allowing smooth interpolation between gauge theory and gravity
regimes. Finally, the most promising aspect of these advances is that integrability is also
present in QCD itself in certain limits. Indeed this is where it was first discovered [5].

The purpose of these notes is to describe the emergence of integrability on both sides
of the AdS/CFT correspondence at a level accessible to early-stage graduate students. In
particular we will focus on the simplest non-trivial cases on both sides of the correspondence,
restricting our attention to one-loop perturbative gauge theory and semi-classical string theory.
In both cases we will see that an integrable system in one compact spatial dimension emerges.
We will also focus on a particular limit where this spatial dimension becomes large (in a sense
to be defined). In this limit the spectrum consists of a set of asymptotic states which undergo
scattering via a unitary S-matrix. As we review, integrability corresponds to a remarkable
factorization property of the S-matrix. To make contact between gauge theory and string
theory we will focus on the spectrum of asymptotic states and demonstrate a non-trivial
agreement between the two theories.

Along the way we will also review the basic aspects of the AdS/CFT correspondence.
However, this is not meant to be a comprehensive introduction to AdS/CFT which is a huge
subject with several excellent review articles [2, 3]. Instead this paper is meant to provide some
of the necessary background to understand the rapid subsequent developments in AdS/CFT
integrability. Some of these developments are described in the other review articles in this
volume and we will not even attempt a summary here. Similarly, we will only mention papers
which are directly relevant to the basic aspects of the subject covered here and no attempt is
made to provide a complete list of references.

The rest of these notes are organized as follows. In section 2 we review basic aspects
N = 4 SUSY Yang–Mills, including conformal invariance, the large-N expansion and the
AdS/CFT correspondence. After defining integrability in section 3, we focus on its emergence
in gauge theory (section 4). Section 5 is devoted to the integrability of string theory on
AdS5 × S5.

2. N = 4 supersymmetric Yang–Mills theory

Like QCD, the N = 4 theory is a non-Abelian gauge theory in D = 3 + 1. Here we focus
on the theory with gauge group G = SU(N). The theory has the largest possible spacetime

1 Here we mean that the worldsheet dynamics of a single string is strongly coupled. In contrast, for the cases we
study, the string coupling, gs , which controls the interaction between different strings, will be small.
2 The planar or ’t Hooft limit is reviewed below.
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symmetry group consistent with a renormalizable QFT in 3 + 1 dimensions. The bosonic part
of the global symmetry group is SO(4, 2) × SO(6). The first factor is the conformal group in
four dimensions which includes SO(3, 1) group of Lorentz transformations as a subgroup. The
second factor is the global R-symmetry group SO(6) � SU(4). These bosonic generators are
augmented by a total of 32 component supercharges, which together generate the supergroup
PSU(2, 2, |4).

The matter content of the theory consists of a single vector multiplet of N = 4 SUSY
which includes the following fields,

Fields SO(6)R

Aμ 1

λA
α λ̄Ā

α̇ 4 ⊕ 4̄

�a 6

Our index conventions are as follows. The gauge field carries a Lorentz vector index
μ = 0, 1, 2, 3. Left- and right-handed Weyl fermions carry Lorentz spinor indices, α, α̇ = 1, 2
respectively. The six real scalars carry an R-symmetry vector indices a = 1, 2, . . . 6 while
the fermions are R-symmetry spinors with indices A, Ā = 1, 2, 3, 4 for the 4 and 4̄ of
SO(6) � SU(4), respectively.

Supersymmetry requires that all fields in the vector multiplet are in the same representation
of the gauge group. Specifically, all fields are in adjoint representation of SU(N). Thus the
real scalar fields �a are Hermitian, traceless N ×N matrices which transform under the gauge
group as

�a → U †�aU U ∈ SU(N).

The Lagrangian of the theory is uniquely fixed by N = 4 SUSY. Here we only give the
bosonic terms explicitly,

L = 1

g2
TrN

[
−1

4
FμνF

μν + Dμ�aDμ�a +
∑
a>b

[�a,�b]2 + fermions

]
.

The only free parameters of the theory are3 N and g2.

2.1. Conformal symmetry

In addition to Poincare invariance, the N = 4 theory is also invariant under dilatations or
scale transformations,

D : xμ → λxμ

which act on the classical fields X of the N = 4 theory as,

D : X(xμ) → λ�0X(λxμ),

where �0 = [X] is the mass dimension of the field X. Specifically, the various fields in the
theory have classical dimensions

�0 = +1 scalars �a

= + 3
2 fermions λA

α , λ̄Ā
α̇

= +2 field strength Fμν.

3 The theory also has a vacuum angle θ which will play no role in the following.
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μ

1

ΛQCD

g2(μ)

Figure 1. The running coupling.

Each bosonic term in the Lagrangian L has dimension �0 = 4 and thus the action,

S =
∫

d4xL

is invariant under D.
The spacetime symmetry of the theory includes the following generators,

• The Poincare group is generated by Lorentz boosts Mμν = −Mνμ and spacetime
translations Pμ.

• The N = 4 theory is invariant under the larger conformal group SO(4, 2) which
also includes the dilatation generator D and the generator Kμ of special conformal
transformations

Kμ : xμ → xμ + aμx2

1 + 2xνaν + a2x2

Together these transformations generate SO(4, 2), which is the group of conformal
transformations in four dimensions,⎛⎜⎜⎜⎝

0 D J +
ν

−D 0 J−
ν

−J +
μ −J−

μ Mμν

⎞⎟⎟⎟⎠
where J±

μ = (Kμ ± Pμ)/2. The commutation relations of these generators are given in
appendix B.

• The supercharges QA
α , Q̄Ā

α̇ , SA
α , S̄Ā

α̇ enlarge the conformal group SO(4, 2) to the N = 4
superconformal group denoted PSU(2, 2|4). We will not need any detailed knowledge of
the fermionic transformations in the following.

2.2. Conformal field theory

Ordinary Yang–Mills theory and QCD with massless quarks are also conformally invariant
at the classical level. But, in these theories, invariance under dilatations D is broken by an
anomaly in the quantum theory. The main symptom of this breaking is the non-vanishing of the
β function: β(g) = μ∂g/∂μ < 0 which leads to a running coupling g2(μ) with dependence
on the RG scale μ (see figure 1).

4



J. Phys. A: Math. Theor. 42 (2009) 254001 N Dorey

In contrast N = 4 SUSY Yang–Mills has

β(g) ≡ 0.

For a perturbative proof see [6]. Arguments for the non-perturbative vanishing of the β-
function are given in [7]. As a consequence the dimensionless coupling g2 does not run and
the SO(4, 2) conformal invariance of the classical theory is unbroken.

The natural observables of the theory are correlation functions of gauge-invariant local
operators. We construct these observables from the following steps,

• Form ‘words’

· · · λA
αDμ�aDν λ̄

Ā
α̇ · · ·

from products (and linear combinations) of all possible ‘letters’ corresponding to adjoint
fields evaluated at the same spacetime point x,

�a(x), λA
α (x), λ̄Ā

α̇ (x), Dμ(x).

Note that field strength also arises via the commutator Fμν = [Dμ,Dν].
• Make gauge invariants by taking traces. For example, the single trace operator,

Ô1 = TrN
[
λA

αDμ�aDν λ̄
Ā
α̇

]
.

All such operators have a well-defined classical scaling dimension �0 which is just the
sum of the mass dimensions of each ‘letter’ e.g. �0 = 6 for the operator Ô1 defined
above. We can also consider multi-trace operators such as

Ô2 = TrN [�a�b]TrN [FμνF
μν].

• Correlation functions of local operators Ôi at different spacetime points are defined by
introducing sources Ji(x) for each operator in the exponent of the path integral in the
usual way,

Z [{Ji}] =
∫

[dA][dλ][dλ̄][d�] exp

(
i

h̄

∫
d4xL +

M∑
i=1

Ji(x)Ôi(x)

)

〈Ô1(x1)Ô2(x2) · · · ÔM(xM)〉 = δM

δJ1(x1)δJ2(x2) · · · δJM(xM)
Z [{Ji}] .

We focus on the simplest case of the two point function of an operator Ô(x) of classical
dimension �0. By conformal and translation invariance, the tree-level two-point function is

〈Ô(x)Ô(y)〉 ∼ 1

(x − y)2�0
.

For example, choose,

Ô = TrN [�n] → �0 = n.

The tree-level position space Feynman diagram contributing to the two-point function is shown
in figure 3 and consists of n scalar propagators (see figure 2), giving the result

〈Ô1(x)Ô2(y)〉 ∼
[

1

(x − y)2

]n

= 1

(x − y)2n

as expected.
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x y
∼ 1

(x−y)2

Figure 2. Scalar propagator.

x

y

x y

1
(x−y)2

Figure 3. Tree-level contribution to the two-point function.

x

y

z Quartic scalar vertex

Figure 4. A one-loop contribution to the two-point function.

At the next order perturbation theory we encounter UV divergent contributions to the
two-point function such as the one shown in figure 4. This graph includes an integral over the
position z of the four-point scalar vertex of the form,∫

d4z
1

(x − z)4

1

(y − z)4

which has a logarithmic divergence when z is near the points x or y.
This reflects a divergence associated with defining the composite operator TrN [�n] which

can be regulated by point-splitting e.g. for n = 2 defining

Ô = TrN [�2(x)] = lim
ε→0

TrN [�(x + ε)�(x − ε)].

Equivalently we can introduce a UV cutoff  ∼ 1/ε in momentum space. After subtracting
the divergent parts at RG scale μ we define a renormalized operator,

Ôren = Z · Ôbare Z =
(μ



)γ (g2)

,

where

γ (g2) = γ1g
2 + γ2g

4 + · · ·
6
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a1a1
b1

b1

a2
a2

b2
b2

O 1
N2

Figure 5. Double-line notation.

is the anomalous dimension of the operator Ô. Under a dilatation the RG scale changes
μ → λμ so that

Ôren →
(

λμ



)γ (g2)

λ�0Ôren.

Thus the scaling dimension of Ôren is,

� = �0 + γ (g2).

A conformal field theory is characterized by its spectrum of (renormalized) operators {Ô}
(as well as the coefficients of the operator product expansion). These operators transform in
unitary irreducible representations of the global symmetry group SO(4, 2)×SO(6). States are
labelled by Cartan eigenvalues of these representations which are denoted by

(�, S1, S2, J1, J2, J3).

Here � = �0 + γ (g2) is the scaling dimension, S1 and S2 are conformal spins and J1, J2, J3

correspond to three commuting U(1)R-symmetries ⊂ SU(4). Apart from �, these charges
correspond to generators of compact subgroups of SO(4, 2)×SO(6) and are therefore quantized
in integer units.

2.3. The large-N expansion

In QCD, perturbation theory in the gauge coupling g2(μ) is only useful in the UV (e.g. deep
inelastic scattering). IR physics such as quark confinement and chiral symmetry breaking is
non-perturbative in g2(μ). In 1979 ’t Hooft proposed an alternative expansion scheme where
the SU(3) gauge group of QCD is replaced by SU(N) and we take the limit,

N → ∞ with λ = g2N held fixed.

The quantity λ is known as the ’t Hooft coupling. Corrections to this limit are considered as a
power series in 1/N .

There are several reasons why such an expansion is sensible.

• The leading order N = ∞ theory still exhibits confinement and chiral symmetry breaking.
This can be established for example by considering the behaviour of the Wison loop area
law in lattice gauge theory as a function of N.

• There are many indications in the real world that the large-N approximation might be a
good one. These include the occurrence of Regge trajectories in the mesonic spectrum
and phenomenological selection rules such as Zweig’s rule which are well obeyed in
nature.

• The large-N limit leads to important simplifications that might allow an analytic solution
of the theory.

We will now study the large-N expansion at the level of Feynman diagrams. The expansion
works the same in any theory with adjoint fields. We will use the double line notation (see
figure 5) which relies on the following decomposition of the adjoint representation of SU(N),

adj ≡ N ⊗ N̄ − 1.

7
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Figure 6. A planar diagram.

Figure 7. A non-planar diagram.

Figure 8. String perturbation theory.

λ0
λ

λL−1

Figure 9. The sum of planar diagrams.

Individual Feynman diagrams can then be thought of as triangulations of an auxiliary
2D surface. Examples are shown in figures 6 and 7. Each edge corresponds to a propagator
weighted with g2 = λ/N . Each vertex is weighted with 1/g2 = N/λ. Each face of the
triangulation corresponds to a trace over a closed index loop which yields a factor of N. If the
total numbers of vertices, edges and faces in a vacuum diagram are V E and F, the diagram
scales like

NV −E+F λE−V = NχλE−V

where χ = V − E + F is the Euler character of the corresponding 2D surface which can also
be written as χ = 2 − 2g, where g is the genus.

The 1/N expansion is an expansion in the topology of 2D surfaces (see figure 8) which is
formally identical to closed string perturbation theory with the identification gs = 1/N . The
leading order is given by planar diagrams like the one shown in figure 6. The sum over all
planar diagrams is still very complicated (see figure 9) and has not yet been evaluated except
in various lower dimensional models.

2.4. The AdS/CFT correspondence

The AdS/CFT correspondence is a precise equivalence between two theories,

N = 4 SUSY Yang – Mills ≡ IIB string on AdS5 × S5.

8
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S5

AdS5

Figure 10. An artists impression of AdS5 × S5.

2.4.1. Symmetries. To understand the spacetime geometry of the dual string background,
see figure 10, note that a 5-sphere S5 of radius R can be embedded in R

6 as

X2
1 + X2

2 + · · · + X2
6 = R2.

Its isometry group is the rotation group in R
6 which is SO(6). Similarly, five-dimensional

anti-de Sitter space of radius R can be embedded in R
4,2 as

−Y 2
−1 − Y 2

0 + Y 2
1 + · · · + Y 2

4 = −R2.

The corresponding isometry group is SO(4, 2). The geometry also admits covariantly constant
Killing spinors and is invariant under a 32 component supersymmetry algebra. This is the first
point of contact between the theories on both sides of the correspondence. The isometry group
SO(4, 2) × SO(6) of AdS5 × S4 (+ 32 supercharges) matches global symmetry of N = 4
SUSY Yang–Mills.

2.4.2. Parameters. AdS/CFT also implies the following identifications between the
parameters of the two theories:

string coupling, gs = g2

4π
, radius,

R2

α′ =
√

g2N =
√

λ.

In the ’t Hooft limit, N → ∞ with λ = g2N fixed, we have gs ∼ 1/N . Thus planar gauge
theory is mapped to free string theory as expected. Similarly the radius of the geometry in
string units is identified according to R2/α′ = √

λ. Thus the geometry is large in string units
at λ � 1 when the dual gauge theory is strongly coupled.

2.4.3. Observables. Gauge theory operators of dimension � are identified with string theory
states of energy �. More specifically,

• single trace operators correspond to single string states while multi-trace operators
correspond to multi-string states;

• the gauge theory quantum numbers (S1, S2) which encode the Lorentz spin of operators
correspond to angular momenta of the string on AdS5. The three commuting R-charges
(J1, J2, J3) in the gauge theory correspond to angular momenta of the string on S5.

Let Ôi , with i = 1, . . . , M , be single-trace operators with scaling dimensions �i . At
leading order in the 1/N expansion, the dimension for the multi-trace operator, Ô1Ô2 · · · ÔM

is simply � = �1 + �2 + · · · + �M , in other words the dimension of a multi-trace operator is
simply the sum of the dimensions of its single trace constituents. This corresponds to the fact
that the dual string theory becomes free in the planar limit. Energies of multi-string states are
just the sum of the energies of the constituent single strings.

9
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The key prediction of the AdS/CFT correspondence is the equality of two spectra:

(A) The spectrum of dimensions of gauge-invariant single-trace local operators in planar
N = 4 SUSY Yang–Mills.

(B) The spectrum of energies of a single, free string moving on AdS5 × S5.

To check this prediction we need to calculate both spectra and compare. In planar
gauge theory, operator dimensions will have an infinite expansion in powers of the ’t Hooft
coupling λ.

� = �0 + λ�1 + · · · + λL�L + · · · .
The Lth term comes from planar diagrams with L loops. Calculations to fixed order are only
reliable for λ � 1. However, in string theory, the spectrum of a free string is determined by
quantizing the worldsheet action for string motion on AdS5 × S5. Schematically, this has the
form of a nonlinear σ -model,

Sσ = 1

g2
σ

∫
d2σGMN(X)∂+X

M∂−XN + fermions.

The σ -model coupling constant g2
σ is related to the effective string tension which is set by the

radius of the geometry in string units (see appendix A),

g2
σ ∼ α′

R2
= 1√

λ
.

Thus the string σ -model is only weakly coupled in the limit of large ’t Hooft coupling λ � 1.
Thus, as mentioned above, direct gauge theory and string theory calculations are generally
only possible in non-overlapping regimes. This makes the predictions of AdS/CFT hard to
test for generic observable.

An important exception to this rule is provided by a special set of observables related to
chiral primary operators. An example of such an operator is

Ô = Ta1a2···aM
TrN

[
�a1�a2 · · · �aM

]
,

where Ta1a2···aM
is traceless, symmetric tensor of SO(6). Chiral primary operators saturate a

BPS bound � ≡ M which implies that their anomalous dimensions vanish for all values of the
coupling. The dual states in string theory are the Kaluza–Klein modes of massless SUGRA
fields on AdS5 × S5. These include the metric, dilaton, axion and the various higher form
fields of IIB supergravity

gμν, ϕ, C0, F RR
3 , F NS

3 , F RR
5 .

3. What is integrability?

Integrability provides the answer to the question ‘When can we hope to solve a dynamical
system analytically?’. We start by considering the case of classical mechanics where the notion
of integrability can be defined precisely. We consider a dynamical system with M degrees of
freedom corresponding to positions, qi , and conjugate momenta, pi , for i = 1, 2, . . . , M . We
introduce the usual Poisson bracket,

{f, g} =
M∑

j=1

[
∂f

∂pj

∂g

∂qj

− ∂f

∂qj

∂g

∂pj

]
for functions f and g on the phase space. Thus, in particular, we have

{pi, qj } = δij .

10
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Time evolution of the dynamical variables is generated by the Hamiltonian H [p, q] ⇒
Hamilton’s equations,

q̇j = {H, qj } = ∂H

∂pj

ṗj = {H,pj } = −∂H

∂qj

.

The basic aim here is to solve Hamilton’s equations for arbitrary initial data
pj (0), qj (0), j = 1, 2, . . . , M . As these are coupled nonlinear differential equations this
is usually impossible. Special cases where analytic solutions exist are closely related to the
existence of conserved quantities which remain constant along the particle trajectories. For
any function I [p, q], İ ≡ 0 if and only if {H, I } = 0. Thus conserved quantities correspond
to functions on phase space which Poisson commute with the Hamiltonian. To illustrate the
problem we consider a typical problem of M non-relativistic particles interacting via a pairwise
potential V (X),

H =
M∑

j=1

P 2
j

2
+
∑
i>j

V (Xi − Xj). (1)

For a generic choice of interaction potential V , the only conserved quantities are the total
energy E = H and the total momentum P = ∑M

i=1 Pi .
A special case arises for dynamical systems with M degrees of freedom which exhibit M

independent conserved quantities ‘in involution’

⇒ ∃ Ij [p, q] j = 1, 2, . . . ,M

such that,

{H, Ij } = 0 {Ii, Ij } = 0 ∀i, j.

In this case we have the following theorem.

Theorem. (Liouville). An integrable system can be solved ‘by quadratures’. In other words
it can be solved by solving a finite number of ordinary (rather than differential) equations and
performing a finite number of integrations.

In the context of the model of M non-relativistic particles with Hamiltonian (1),
integrability arises for certain very special choices for the two-body interaction,

V (X) = 1

X2

= a2 1

sin2 (aX)

= a2 1

sinh2 (aX)
.

The first case defines the Calogero model. The second and third are known as trigonometric
and hyperbolic Calogero–Sutherland models respectively.

It is straightforward to generalize the notion of integrability from classical to quantum
mechanics. In particular we may quantize an integrable dynamical system by the usual
replacements,

Ij → Îj , {, } → i

h̄
[ , ],

11
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where Îj is a Hermitian operator and [, ] denotes a commutator. The resulting system is
quantum integrable if

[Ĥ , Îj ] = 0 [Îi , Îj ] = 0 ∀i, j.

Thus, if the system is quantum integrable, the operators Îj for j = 1, 2, . . . , M can be
diagonalized simultaneously with Ĥ . To solve the model we need to find the resulting
spectrum of Ĥ , Îj . Unfortunately there is no quantum analogue of Liouville’s theorem but the
spectrum can often be obtained exactly using a set of techniques known as the Bethe ansatz.

4. Integrability in gauge theory

In this section we will compute the one-loop anomalous dimensions of an infinite set of single
trace operators following Minahan and Zarembo [8].

The matter content of N = 4 SUSY Yang–Mills includes three complex scalar fields,

X = �1 + i�2, Y = �3 + i�4, Z = �5 + i�6

each in the adjoint representation of SU(N). To count insertions of these fields, we define
R-charges corresponding to a Cartan subgroup U(1) × U(1) × U(1) of SU(4)R ,

J J1 J2

X +1 0 0

Y 0 +1 0

Z 0 0 +1

Although the results of this section can be generalized to the full operator spectrum, for
simplicity we will focus on the SU(2) sector of single trace operators made from Z and Y only,

Ô ∼ TrN
[
ZJ1Y J2

]
. (2)

To enumerate these operators it is useful to introduce the notation,

Z =↑ Y =↓
giving a correspondence between SU(2) sector operators and the configurations of a spin
chain,

TrN [ Z Z Y Y Z Z Z Z Y Z Y ]
↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↑ ↓ .

The correspondence is as follows,

• An operator of the form (2) corresponds to a configuration of a spin chain of length
L = J1 + J2.

• The classical dimension of the operator is �0 = L.
• The number of flipped spins M = J2.
• We label the sites of the chain with an index l ∈ Z with the periodic identification l ∼ L+l.
• Cyclicity of the trace implies that we must identify spin configurations related by cyclic

permutations of the sites.

Following Minahan and Zarembo, our goal is to compute the one-loop anomalous
dimensions of all such operators. This is complicated by the fact that operators can mix
under renormalization. Specifically, the multiplicative renormalization constants required to
make correlations finite can have matrix structure4,

ÔI
ren = ZIJ · ÔJ

bare,

4 NB Global symmetries ⇒ SU(2) sector operators do not mix with operators outside this sector.
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(a) (b)
ll l + 1l + 1

(c)

+

. . . l . . .l l+1 . . .l + 1 . . .

Figure 11. One-loop diagrams contributing to the anomalous dimension. Blob in (c) represents
self-energy insertion.

where the index I labels all SU(2) sector operators. Equivalently the dilatation generator
D = D0 + δD, where D0 = IL is the tree level piece and δD acts on operators as a non-
diagonal matrix with elements,

δDIJ = μ
∂

∂μ
logZIJ .

Here we need to find linear combinations of operators with well-defined scaling dimensions.
These are the eigenvectors of δDIJ . Their anomalous dimensions are the corresponding
eigenvalues.

We will now sketch the calculation of the one-loop dilatation operator (for more details
see [8]),

• The matrix δDIJ can be extracted from the two point function,〈
ÔI

ren(x)ÔJ
ren(y)

〉 ∼ 1

(x − y)DIJ
.

• The relevant one-loop diagrams contributing to the two point function are shown in
figure 11. Note that interactions between non-adjacent scalar propagators are non-planar
and are thus suppressed by a factor of 1/N2.

The final result of this computation, first performed by Minahan and Zarembo in 2002 is
easiest to express as an operator acting on configurations of the spin chain described above,

D = IL +
λ

8π2
Ĥ + O(λ2),

where we express Ĥ acting on a spin chain as

Ĥ =
L∑

l=1

(Il,l+1 − Pl,l+1),

where I and P act on neighbouring spins at sites l and l + 1 as the identity and permutation
operators respectively,

Il,l+1| · · · ↑ ↓ · · ·〉 = | · · · ↑ ↓ · · ·〉
l l+1 l l+1

Pl,l+1| · · · ↑ ↓ · · ·〉 = | · · · ↓ ↑ · · ·〉
l l+1 l l+1

.

13
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Here I is diagonal in SO(6) indices and receives a contribution from each diagram in figure 11.
In contrast P is non-diagonal in SO(6) indices and comes solely from the scalar vertex diagram
(figure 11(b)).

The problem of finding the one-loop anomalous dimensions then reduces to that of
diagonalizing the ‘spin-chain Hamiltonian’ Ĥ in other words finding eigenvectors, Ĥ |�〉 =
E|�〉. The scaling dimension is then related to the eigenvalue E according to

� = L +
λ

8π2
E + O(λ2).

Remarkably, the Hamiltonian Ĥ is the Hamiltonian of the XXX 1
2

spin chain. This chain
was introduced by Heisenberg in 1926 as a simple one-dimensional model of magnetism and
first solved by Bethe in 1931. It was understood as an integrable system only much later in
early 1980s by Faddeev and Takhtajan. To demonstrate integrability it is useful to rewrite the
Hamiltonian in terms of SU(2) spin operators Ŝa

l , a = 1, 2, 3 l = 1, 2, . . . , L, obeying the
usual SU(2) commutation relations at each site,[

Ŝa
l , Ŝb

l′
] = 2 iδll′ε

abcŜc
l . (3)

In terms of these operators, the Hamiltonian reads

Ĥ = 1

2

L∑
l=1

(
1 − Ŝl · Ŝl+1

)
with Ŝl = (

Ŝ1
l , Ŝ

2
l , Ŝ

3
l

)
.

The algebraic Bethe ansatz due to Faddeev and Takhtajan starts from the existence of a
Lax matrix of operators defined at each site,

Ll (u) =
(

u + iŜ3
l iŜ+

l

iŜ−
l u − iŜ3

l

)
for l = 1, 2, . . . , L where u ∈ C is known as the spectral parameter. A tower of conserved
quantities are obtained by constructing the monodromy operator,

T̂ (u) = tr2 [L1(u)L2(u) · · · LL(u)]

= 2uL + q̂2u
L−2 + · · · + q̂L−1u + q̂L. (4)

One may check starting from the commutators (3) that

[T̂ (u), T̂ (v)] = 0 ∀u, v ∈ C

Ĥ = i
d

du
log T̂ (u)

∣∣∣∣
u= i

2

− LI

the operators, q̂j , j = 2, 3, . . . , L are conserved, [Ĥ , q̂j ] = 0 and mutually commuting:
[q̂j , q̂k] = 0∀j, k. Thus the Heisenberg spin chain is integrable. For more details see [10].

4.1. The Bethe ansatz

In this section we will study Bethe’s solution of the Heisenberg spin chain using elementary
methods. A useful reference for the material in this section is [9]. It is convenient to organize
the spectrum in terms of the number of flipped spins M. For each value of M, we will first
consider the case of an infinite chain L → ∞ and then return to the case of finite L. The
simplest state corresponds to

14
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M = 0 The ferromagnetic vacuum,

|0〉 = · · · ↑ ↑ ↑ ↑ ↑ ↑ ↑ · · ·
has eigenvalue E = 0. This is consistent with the fact that the corresponding gauge theory
operator,

Ô = TrN [ZJ1 ],

is a chiral primary operator with protected dimension � ≡ J1 (BPS formula: see section 3.5
of [3]). Thus its anomalous dimension must vanish at each loop order.

M = 1 Consider a state with one flipped spin at the lth site,

|l〉 = · · · ↑ ↑ ↑ ↓ ↑ ↑ ↑ · · · .
l

The position eigenstate |l〉 is not an eigenstate of Ĥ . Instead we will try the corresponding
momentum eigenstate,

|p〉 =
∑
l∈Z

�p(l)|l〉 �p(l) = exp( ipl).

First one can check that

(Il,l+1 − Pl,l+1)|l′〉 = δl,l′(|l′〉 − |l′ + 1〉) + δl,l′−1(|l′〉 − |l′ − 1〉).
Thus, acting with the Hamiltonian, we find

Ĥ |l′〉 =
∑
l∈Z

(Il,l+1 − Pl,l+1)|l′〉 = 2|l′〉 − |l′ + 1〉 − |l′ − 1〉

and so,

Ĥ |p〉 =
∑
l′∈Z

exp( ipl′)Ĥ |l′〉

=
∑
l′∈Z

exp( ipl′)[2|l′〉 − |l′ + 1〉| − |l′ − 1〉]

=
∑
l′∈Z

exp( ipl′)[2 − exp( ip) − exp(− ip)]|l′〉

= 4 sin2
(p

2

)
|p〉

confirming that |p〉 is an eigenstate.
It is useful to think of the flipped spin as a particle or magnon propagating along the chain

with conserved momentum p and dispersion relation,

E(p) = 4 sin2
(p

2

)
.

The resulting periodicity of momentum space is typical of lattice systems and corresponds
to the existence of a Brillouin zone. To return to the case of periodic chain we impose the
periodic boundary condition,

�p(l + L) = �p(l) → exp( ipL) = 1.

Thus the allowed values of momentum are quantized,

p = 2π

L
n n ∈ Z (5)

integer n known as mode number.
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a))

)b)

l1

l1

l2

l2

p1

p1

p2

p2

Figure 12. (a) Incident magnons and (b) transmitted magnons.

l

t

p1 p2

Figure 13. Two magnon scattering.

There is an important subtlety here: we still have to impose invariance under cyclic
permutations which implies the identification |l〉 ≡ |l′〉∀l, l′ ∈ Z. Choosing the momentum p
according to (5) we find

|p〉 =
L∑

l=1

exp

(
2πn

L

)
|l〉 =

[
L∑

l=1

exp

(
2πn

L

)]
|l = 1〉.

The sum in brackets vanishes unless n = 0. Thus the magnon state does not correspond to a
gauge theory operator unless,

p = 0.

M = 2 For an infinite chain, we can expand a general state in terms of position eigenstates
as

|�〉 =
∑
l1∈Z

∑
l2>l1

�(l1, l2)|l1, l2〉

where

|l1, l2〉 = · · · ↑ ↑ ↑ ↓ ↑ ↑ ↑ · · · · · · ↑ ↑ ↑ ↓ ↑ ↑ ↑ · · ·
l1 l2

.

The natural ansatz for wavefunction is a scattering state of two magnons,

�p1,p2(l1, l2) = exp (p1l1 + p2l2) + S(p1, p2) exp (p1l2 + p2l1) . (6)

The first term on the rhs of (6) corresponds to a partial wave describing two incident magnons
propagating as shown in figure 12(a). The second term corresponds to partial wave describing
two transmitted5 magnons propagating as shown in figure 12(b). A spacetime picture of the
scattering process is shown in figure 13.

5 For identical particles in one spatial dimension the processes of transmission and reflection are indistinguishable.
Thus we do not need to include a separate contribution to account for reflection.
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As usual in scattering, the coefficients of the incident and transmitted waves can differ by
a phase factor S(p1, p2) known as the S-matrix.

Reality of the energy eigenvalues requires,

S(p1, p2) = S−1(p2, p1).

It is straightforward to show that the wavefunction �p1,p2(l1, l2) given in (6) is an
eigenfunction of Ĥ with eigenvalue,

E(p1, p2) = 4 sin2
(p1

2

)
+ 4 sin2

(p2

2

)
(7)

provided the S-matrix is given by

S(p1, p2) = u(p1) − u(p2) + i

u(p1) − u(p2) − i
,

where u(p) = cot(p/2)/2 is known as the magnon rapidity. The eigenvalue (7) is just the sum
of the energies of two magnons of momentum p1 and p2, respectively. This reflects the fact
that the magnons propagate freely except when they reach neighbouring sites with l2 = l1 + 1.

In any scattering theory an important possibility is that elementary excitations can form
bound states. Each such object is a new asymptotic state of the theory with its own dispersion
relation and S-matrix. Indeed the complete spectrum of the theory in the L → ∞ limit simply
consists of all possible free multiparticle states including arbitrary numbers of each species of
bound state. In addition to scattering states described above, we can also have a bound state
of two magnons corresponding to the pole in the S-matrix when

u(p1) = u(p2) + i → 1

2
cot

(p1

2

)
− 1

2
cot

(p2

2

)
= i, (8)

which corresponds to a bound state with U(1) charge J2 = Q = 2 and momentum p = p1+p2.
The corresponding scattering process is shown in figure 14.

We solve these conditions by setting [9, 10]

p1 = p

2
+ iv p2 = p

2
− iv

in (8) which yields cos(p/2) = exp(v). This yields a state with energy,

E2(p) = E(p1) + E(p2) = 4 sin2
(p

4
+ i

v

2

)
+ 4 sin2

(p

4
− i

v

2

)
= 2 sin2

(p

2

)
. (9)

Thus the position of the pole uniquely fixes the dispersion relation of the bound state.
Finally, returning to the case of a finite chain of length L we must impose periodic

boundary conditions,

�p1,p2(l1 + L, l2) = �p1,p2(l1, l2 + L) = �p1,p2(l1, l2). (10)

As,

�p1,p2(l1, l2) = exp(p1l1 + p2l2) + S(p1, p2) exp(p1l2 + p2l1)

⇒ �p1,p2(l1 + L, l2) = exp(ip1L) exp(p1l1 + p2l2) + exp(ip2L)S(p1, p2) exp (p1l2 + p2l1)

and (10) holds provided,

exp (ip1L) = S(p1, p2), exp (ip2L) = S(p2, p1). (11)

The above equations impose quantization conditions on the two magnon momenta. Note that
the quantization condition now involves the two-body S-matrix. The resulting transcendental
equations are the simplest example of the Bethe ansatz equations we will consider in generality
below.
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t

Q = 1 Q = 1

Q = 1 Q = 1

Q = 2

Figure 14. Formation of a bound state in the s-channel.

M > 2. In the same way we can expand a general state in terms of position eigenstates
for M flipped spins,

|�〉 =
∑
l1∈Z

∑
l2>l1

· · ·
∑

lM>lM−1

�(l1, l2, . . . , lM)|l1, l2 · · · lM〉.

A natural generalization of the two-magnon scattering eigenstate is

�p1,p2,...,pM
(l1, l2, . . . , lM) =

∑
σ∈SM

S(M)
σ (p1, . . . , pM) exp(p1lσ (1) + p2lσ (2) + · · · + pMlσ(M))

(12)

which corresponds to a scattering state for M magnons with momenta p1, p2, . . . , pM . Here
the wavefunction is a sum over all possible partial waves labelled by the permutations σ

of the integers {1, 2, . . . , M}. Each partial wave is weighted by a corresponding phase
S(M)

σ (p1, . . . , pM) which can be thought of as an ‘M-body S-matrix’.
For a generic system the M-body S-matrix is not related in any simple way to the two-

body S-matrix S(p1, p2) given above. However for the Heisenberg spin chain we find a key
simplification:

The multi-magnon scattering amplitude factorises exactly as a product of two-magnon
scattering amplitudes.

Example. For M = 3, considering the scattering of three magnons with momenta
p1 > p2 > p3 shown in figure 15. This scattering corresponds to the three-body S-matrix
S(3)

σ (p1, p2, p3) with

σ =
(

1 2 3

3 2 1

)
.

The statement of exact factorization is

S(3)
σ (p1, p2, p3) = S(p2, p3)S(p1, p3)S(p1, p2),

where

S(p1, p2) = u(p1) − u(p2) + i

u(p1) − u(p2) − i
with u(p) = cot(p/2)/2 as above. This is illustrated in figure 16 below.
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l

t

p1 p2

p3

Figure 15. Three magnon scattering.

p1p1 p2p2

p3

p3

Figure 16. Factorization of three magnon scattering.

A similar factorization property holds for all M. The decomposition corresponds to the fact
that any permutation σ ∈ SM can be factored as a composition of transpositions of adjacent
elements. Each transposition corresponds to a factor of the two body S-matrix S. For more
details see [9]. In conclusion,

• M-body wavefunction (12) is uniquely determined in terms of the momenta {p1, . . . , pM}.
• Corresponding energy eigenvalue is just the sum of individual magnon energies,

E(p1, . . . , pM) =
M∑

j=1

4 sin2
(pj

2

)
.

We may use this factorization property to find bound states of Q magnons for any Q. These
states correspond to poles in the Q magnon S-matrix and therefore to poles in the two-body
factors. Using the factorization property, these appear when the momenta of the Q constituent
magnons satisfy [10, 11],

u(pj ) − u(pj+1) = i (13)

for j = 1, 2, . . . ,Q − 1. This corresponds to a string of roots in the complex u plane. The
condition is easily solved and leads directly to the bound-state dispersion relation:

EQ(p) = 4

Q
sin2

(p

2

)
. (14)

Roughly speaking, the Q-magnon bound state corresponds to a state of the spin chain with
Q flipped spins where the wavefunction is strongly peaked on configurations where all the
flipped spins are nearly adjacent in the chain
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Q = 4

Q = 7

u

Figure 17. Two Bethe strings corresponding to bound states of charge Q = 4 and Q = 7,

respectively.

p1

p2 pM−1

pM

p1

p2

pM−1

pM

Figure 18. Multi-particle scattering.

4.2. Integrability and factorized scattering

Consider M-particle scattering in generic (1 + 1)D theory with dispersion relations E(p) e.g.,

E(p) = p2

2m
non-relativistic

=
√

m2 + p2 relativistic

= 4 sin2
(p

2

)
spin-chain.

Let the incoming momenta be p1, p2, . . . , pM and the out going momenta be p′
1, p

′
2, . . . , p

′
M

as shown in figure 18.
Typically we have only two conservation laws: conservation of momentum,

M∑
j=1

pj =
M∑

j=1

p′
j
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p1p1 p2p2

p3

p3

Figure 19. Factorization of multi-particle scattering.

and conservation of energy,

M∑
j=1

E(pj ) =
M∑

j=1

E
(
p′

j

)
.

Thus we typically have two equations for the M unknowns p′
j . For M > 2, we expect to

find a final-state phase space corresponding to the continuous degeneracy of solutions of these
equations. In two dimensions the case of two-body scattering, M = 2, is special. Here we
have two equations

p1 + p2 = p′
1 + p′

2,

E(p1) + E(p2) = E(p′
1) + E(p′

2)

for two unknowns with two isolated solutions {p′
1, p

′
2} = {p1, p2}. In other words, the set of

outgoing momenta is the same as the set of incoming momenta and therefore the individual
particle momenta are conserved.

In general this is no longer true for M > 2. However if we have factorized scattering the
situation changes. Suppose the M-body scattering amplitude factorizes into a product of two
body amplitudes as shown in figure 19. For reasons described above, individual momenta are
conserved in each two-body process. Thus individual momenta are conserved in full M-body
scattering,

{p′
1, p

′
2, . . . , p

′
M} = {p1, p2, . . . , pM}.

This implies the existence of M conserved quantities. For the spin chain M � L so the total
number of such quantities is L which indicates the integrability of the model. In general, for
integrable systems of massive particles on an infinite line,

Integrability ⇔ factorized scattering.

4.3. The Bethe ansatz equations

To complete the analysis for a finite chain of length L, we must impose periodic boundary
conditions on the M-magnon wavefunction (12) under lj → lj + L for j = 1, 2, . . . , M . Like
M = 1, 2 cases discussed above we get quantization conditions for the magnon momenta. In
the M = 2 case we found (11),

exp( ip1L) = S(p1, p2), exp( ip2L) = S(p2, p1).

The M-body generalization is known as the Bethe ansatz equation (BAE),

exp( ipjL) =
M∏

k �=j

S(pj , pk). (15)

As we have M equations for M unknowns pj we generically find isolated solutions.
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p1

p2

p3

Figure 20. Periodic boundary conditions.

A heuristic derivation of the BAE is as follows. Consider M particles on a circle of
circumference L. The M = 3 case is illustrated in figure 20. By shifting the position of the
j th particle as lj → lj + L we are transporting the particle once around the circle. In the
absence of the remaining particles this transport would produce a phase exp( ipjL). However,
for M > 1 the particle must scatter once with each of the other particles as it goes round the
circle picking up factors S(pk, pj ) for each k �= j . Setting the total resulting phase factor to
unity yields the BAE (15).

We are now ready to translate back to the language of gauge theory operators and
summarize the full solution for the one-loop dimensions in the SU(2) sector.

• Eigenstates of the one-loop dilatation operator are built from linear combinations of the
basis operators,

|l1, l2, . . . , lM〉 = TrN [· · ·Z Z Y Z Z · · · Z Z Y Z Z · · · Z Z Y Z Z . . .]

l1 l2 lM

• The relevant linear combination is the M-magnon state,

|p1, p2, . . . , pM〉 =
∑
l1∈Z

∑
l2>l1

· · ·
∑

lM>lM−1

�p1,p2,...,pM
(l1, l2, . . . , lM)|l1, l2, . . . , lM〉

with wavefunction �p1,p2,...,pM
given in (12).

• The total energy of this state is

E =
M∑

j=1

4 sin2
(pj

2

)
.
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• The momenta pj are constrained by the BAE equations (15),

exp( ipjL) =
M∏

k �=j

S(pj , pk). (16)

• We must also impose the constraint coming from cyclicity of the trace. This is simply the
statement that the total momentum vanishes

P =
M∑

j=1

pj = 0 mod 2π. (17)

• After solving these conditions and evaluating the energy, the one-loop anomalous
dimensions of the corresponding operator is γ = λE/8π2.

4.4. Beyond one loop

So far we have only discussed the spectrum of the theory at one loop and only in the SU(2)

sector where operators are formed from the two scalars Y and Z. However, there is by now
an abundance of evidence that integrability and the spin chain description persists in the full
quantum theory. At least in the limit of a very long spin chain/operator the problem of finding
exact anomalous dimensions amounts to finding the exact spectrum of asymptotic states and
the two-body S-matrix describing their scattering. These ingredients can then be used to write
down asymptotic Bethe ansatz equations (ABAE) which replace those of the one-loop theory
described above. Remarkably this problem has been completely solved and the resulting set of
ABAE, though conjectural, have passed many non-trivial tests. We will not attempt to review
these developments here, but only comment on the form of the higher order corrections to the
one-loop results for the SU(2) sector derived above.

It turns out that supersymmetry yields powerful constraints on the magnon dispersion
relation and two-body S-matrix [19]. These constraints provide confirmation for an earlier
proposal [18] for an exact Bethe ansatz in the SU(2) sector. As before the energy of an
M-magnon state is the sum of the energies of individual magnons. However, the exact magnon
dispersion relation now reads

E(p) = 8π2

λ

[√
1 +

λ

π2
sin2

(p

2

)
− 1

]
(18)

it is easy to see that this coincides with the one-loop result E(p) = 4 sin2(p/2) to leading
order in the ’t Hooft coupling λ. The two-body S-matrix which enters the exact Bethe ansatz
equations for the SU(2) sector now takes the form

S(pk, pj ) = u(pk) − u(pj ) + i

u(pk) − u(pj ) − i
× SD(pk, pj ), (19)

where the rapidity function u(p) is now corrected to

u(p) = 1

2
cot

(p

2

)√
1 +

λ

π2
sin2

(p

2

)
. (20)

The quantity SD is a ‘dressing factor’. Its explicit form has been determined in [20]. The only
fact we will use is that the dressing factor does not cancel the S-matrix pole which appears in
(19) when, u(pk) − u(pj ) = i.
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An obvious question is what happens to the Q-magnon bound states and their dispersion
law (14) described above when we move away from the weak coupling. As the S-matrix pole
survives we may use its position to determine the exact dispersion relation. The result is [23]

EQ(p) = 8π2

λ

[√
Q2 +

λ

π2
sin2

(p

2

)
− Q

]
. (21)

This formula clearly reduces to the dispersion relation (14) of the Heisenberg spin chain at the
weak coupling. Setting Q = 1 we obtain the exact magnon dispersion relation (18). As in the
Q = 1 case, the bound state dispersion relation (21) can also be regarded as a consequence of
supersymmetry. We now verify the formula explicitly in the case Q = 2.

For magnon momenta p1 and p2 the new pole condition reads6

1

2
cot

(p1

2

)√
1 +

λ

π2
sin2

(p1

2

)
− 1

2
cot

(p2

2

)√
1 +

λ

π2
sin2

(p2

2

)
= i (22)

as before we set

p1 = p

2
+ iv p2 = p

2
− iv

and solve for the bound-state momentum p = p1 + p2 as a function of v. After some
computation we obtain a sixth-order polynomial equation, P6(t) = 0, in t = cos(p/2) with
coefficients polynomial in exp(v) and a = λ/4π2. The polynomial P6(t) can be factored
exactly into the product of a quadratic P2(t) and a quartic P4(t) which are conveniently given
as

P2(t) = a(e2v − 1)2(1 + e2v − 2 evt)2 − 4e2v(1 + 6e2v + e4v − 4evt − 4e3vt)

P4(t) = a(1 + e2v − 2evt)2(t2 − 1) + 4ev(t + e2vt − ev(1 + t2)). (23)

The physical root is singled out by its weak-coupling behaviour t = exp(v) needed for
agreement with the corresponding formula for the Heisenberg spin chain discussed above.
Taking the limit a → 0, one may easily check that the physical root belongs to the quartic
equation P4(t) = 0 rather than the quadratic.

The next step is to extract the physical root of the quartic P4(t) = 0, use it to eliminate v

in the energy formula,

E2(p) = E(p1) + E(p2)

= 8π2

λ

[√
1 +

λ

π2
sin2

(p

4
+ i

v

2

)
+

√
1 +

λ

π2
sin2

(p

4
− i

v

2

)
− 2

]
and compare with the predicted dispersion relation (21) for the Q = 2 case. A necessary and
sufficient condition for agreement with (21) is that the physical root of the quartic should also
obey the corresponding energy conservation equation,√

1 +
λ

π2
sin2

(p

4
+ i

v

2

)
+

√
1 +

λ

π2
sin2

(p

4
− i

v

2

)
=

√
4 +

λ

π2
sin2

(p

2

)
. (24)

Squaring this equation twice and rewriting it in terms of t = cos(p/2), exp(v) and a = λ/4π2

we obtain the same quartic equation P4(t) = 0, with P4 as in (23) and we are done. As for the
Heisenberg spin chain, the multi-particle S-matrix has a pole corresponding to a Q-magnon
bound state for each Q when the condition (13) is satisfied. In principle we could check our
proposed dispersion relation (21) for Q > 2 by solving this condition, but we will not pursue
this here.
6 The following calculation can be significantly simplified by a change of variables to x± = x(u ± 2π i/

√
λ) with

x(u) = u +
√

u2 − 4.
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Figure 21. A string moving on S2 ⊂ S3.

5. Integrability in string theory

The IIB string on AdS5 × S5 is described by Metsaev–Tseytlin action [12] which has the
schematic form,

Sσ = 1

g2
σ

∫
d2σGMN(X)∂+X

M∂−XN + ermions,

where GMN is the AdS5 ×S5 metric. The coupling constant g2
σ is related to the effective string

tension which is set by the radius of the geometry in string units,

g2
σ ∼ α′

R2
= 1√

λ
.

The string spectrum can be analysed using semiclassical methods at large ’t Hooft
coupling, λ = g2N � 1. Here we will study the spectrum of classical solutions for a
string moving on an R × S3 subspace of AdS5 × S5.

• The R factor corresponds to the global time of AdS5.
• The string does not move in the other four spacelike directions of AdS5 and therefore

does not carry the AdS5 angular momenta S1, S2 which correspond to conformal spin in
the gauge theory dual.

• The string moves in an S3 subspace of S5 and therefore carries only two of the three
angular momenta (J, J1, J2) which correspond to commuting U(1)R symmetries on the
gauge theory side. We will take this to be the charges J1 and J2.

We will see that the corresponding string states can be related to the SU(2) sector operators
discussed above. We introduce space and timelike worldsheet coordinates:

σ ∼ σ + 2π, τ.

The timelike coordinate in spacetime is X0(σ, τ ) ∈ R and we immediately fix static gauge by
setting X0 = κτ . The coordinates on the sphere correspond to a unit vector in R

4

X(σ, τ ) = (X1, X2, X3, X4) with |X|2 = 1.

With the static gauge X0 = κτ the string energy is � = √
λκ and the worldsheet action

for a bosonic string is,

Sσ =
√

λ

4π

∫
dσdτ [∂αX · ∂αX + (|X|2 − 1)],
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Figure 22. The BMN ground state.

where we introduce the index α = σ , τ for the worldsheet coordinates and (σ, τ) is a
Lagrange multiplier field for the constraint |X|2 = 1 which defines the S3 target space. It is
also convenient to rescale the worldsheet coordinates as

(t, x) = (κτ, κσ )

and define the corresponding rescaled light-cone coordinates,

x± = 1

2
(t ± x), ∂± = ∂

∂x±
.

In static gauge X0 = κτ the energy density along the string is constant. In the rescaled
coordinate x the energy density is

√
λ/2π .

Conserved Noether charges for the string motion correspond to angular momenta on
the sphere. Here we define a U(1)1 × U(1)2 Cartan subgroup of the SU(2)L × SU(2)R
isometry group of the target space under which the complex coordinates Z1 = X1 + iX2

and Z2 = X3 + iX4 have charges (1, 0) and (0, 1) respectively. String states carry the
corresponding conserved Noether charges,

J1 =
√

λ

2π

∫ 2π

0
dσ Im[Z̄1∂τZ1], (25)

J2 =
√

λ

2π

∫ 2π

0
dσ Im[Z̄2∂τZ2], (26)

which can be thought of as angular momenta in two orthogonal planes within S3.

5.1. The ground state

On the gauge theory side the operator of lowest dimension for fixed charge J1 is the chiral
primary,

Ô = TrN [ZJ1 ],

corresponding to the ferromagnetic ground state of the spin chain with exact scaling dimension
� = J1. The corresponding solution in string theory is simply

Z1 = X1 + iX2 = exp( it)

with Z2 = 0 which gives, Z̄1∂tZ1 = i ⇒ J1 = √
λκ = �. The solution W = exp( it)

corresponds to a massless pointlike string moving at the speed of light around the equator of
S3 as shown in figure 22. This is also known as the BMN ground state of the string. In gauge
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theory we found that operators of definite scaling dimension were built out of excitations of
the ferromagnetic ground state, i.e. magnons and their bound states. Here we will try to find
the corresponding excitations on the string theory side of the correspondence.

On the gauge theory side the excitation picture was clearest in the limit of an infinite chain
L → ∞. The corresponding limit on the string theory side is [15]

J1 → ∞, � → ∞
� − J1 = fixed, λ = fixed, J2 = fixed. (27)

As the energy density of the string is constant, the fact that � → ∞ implies that the string
becomes infinitely long in the rescaled coordinate x introduced above. Keeping � − J finite
restricts attention to states with a finite number of excitations or magnons. It requires that
Z1(x, t) asymptotes to the ground state solution Z1 = exp( it) as x → ∞ while Z2 → 0.

5.2. Pohlmeyer reduction: S2 case

To exhibit the integrability of the string equations of motion we will use a procedure known as
Pohlmeyer reduction [22] to simplify the problem. We will begin by illustrating the procedure
for the simpler case of string motion on a 2-sphere. Working on S2 ⊂ S3 we set X4 = 0. In
order to construct a string solution corresponding to an excitation of the BMN vacuum it will
be useful to rewrite the string equation of motion and Virasoro constraint for the coordinates
X = (X1, X2, X3) in terms of a single nonlinear equation.

In terms of the x± coordinates, the string equation of motion coming from the variation
of Sσ becomes

∂+∂−X + (∂+X · ∂−X) X = 0. (28)

The Virasoro constraint is

∂+X · ∂+X = ∂−X · ∂−X = 1.

Thus ∂±X are unit vectors in R
3 and we can write

∂+X · ∂−X = cos (ϕ) ,

where ϕ(x+, x−) is a real scalar field on the worldsheet. We can now describe dynamics of
string in terms of SO(3) invariant field ϕ. A short calculation shows that the string equation
of motion (28) implies the following equation for ϕ,

∂+∂−ϕ + sin (ϕ) = 0.

This is the sine-Gordon equation one of the most famous equations of mathematical
physics. It is a nonlinear second-order PDE which has the property of complete integrability
which we discuss below7. This integrability is manifested by certain hidden symmetries of
the sine-Gordon (sG) equation corresponding to the so-called Backlund transformation. To
illustrate this, suppose that ϕ0(x, t) satisfies the sine-Gordon equation,

∂+∂−ϕ0 + sin (ϕ0) = 0.

We now define a new field configuration ϕ1(x, t) obeying

1

2
∂+ (ϕ0 − ϕ1) = sin

(ϕ0 + ϕ1

2

)
(29)

− 1

2
∂− (ϕ0 + ϕ1) = sin

(
ϕ0 − ϕ1

2

)
. (30)

7 For integrability of the full classical string theory on AdS5 × S5 see [13, 14].

27



J. Phys. A: Math. Theor. 42 (2009) 254001 N Dorey

V

ϕ2π2π

Figure 23. The sine-Gordon potential.

Acting on (29) with ∂− gives

1

2
∂−∂+ (ϕ0 − ϕ1) = ∂− sin

(ϕ0 + ϕ1

2

)
= 1

2
∂− (ϕ0 − ϕ1) cos

(ϕ0 + ϕ1

2

)
= − sin

(
ϕ0 − ϕ1

2

)
cos

(ϕ0 + ϕ1

2

)
= 1

2
[sin (ϕ1) − sin (ϕ0)] .

Thus

∂+∂−ϕ1 + sin (ϕ1) = ∂+∂−ϕ0 + sin (ϕ0) = 0.

Thus, as ϕ0(x, t) satisfies the sG equation so does ϕ1(x, t). The Backlund transformation can
be used to generate new solutions of sG. Finding ϕ1 involves solving the first-order ODEs

1

2
∂+ (ϕ0 − ϕ1) = sin

(ϕ0 + ϕ1

2

)
, −1

2
∂− (ϕ0 + ϕ1) = sin

(
ϕ0 − ϕ1

2

)
,

which is an easier problem than solving the sG equation itself.

5.3. Solutions of the sine-Gordon equation

The sine-Gordon equation of motion arises naturally as the equation of motion for a scalar
field ϕ(x, t) in (1 + 1) dimensions with potential energy,

V (ϕ) = 1 − cos (ϕ) .

The vacua of the theory correspond to the minima of V (ϕ) at ϕ = 2πn for n ∈ Z. We
will study the theory with vacuum boundary conditions

ϕ(x, t) → 2πn± as x → ±∞.

The space of solutions splits up into different sectors labelled by the integers n±. More
precisely we define a conserved topological charge,

Q = n+ − n−.

We will enumerate solutions in different sectors:

• Q = 0. The solution of minimum energy is simply the vacuum,

ϕV(x, t) ≡ 2πn

where n+ = n− = n ∈ Z.
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Figure 24. The sine-Gordon kink K and anti-kink K̄ .

x

ϕ 2π

v

Figure 25. The sine-Gordon kink K moving at speed v.

• Q = 1. Applying the Backlund transformation to the vacuum solution ϕV, we find the
static kink solution,

ϕK(x) = 4 tan−1[exp(x)]

which interpolates between adjacent vacua.
• Similarly or Q = −1 we have the corresponding anti-kink ϕK̄(x) = −ϕK(x). Both are

shown in figure 24.
• Using the Lorentz invariance of the sG equation we can boost the static kink solution to

obtain a solution corresponding to a kink moving with constant velocity v,

ϕ
(v)
K (x, t) = ϕK

(
x − vt√
1 − v2

)
shown below.

5.4. Pohlmeyer reduction: S3 case

We now return to the case of motion on S3. As before, we must solve the equation

∂+∂−X + (∂+X · ∂−X) X = 0 (31)

together with the Virasoro constraint,

∂+X · ∂+X = ∂−X · ∂−X = 1.

Following [22], we will begin by identifying the SO(4) invariant combinations of the
worldsheet fields X and their derivatives. As the first derivatives ∂±X are unit vectors, we can
again define a real scalar field φ(x, t) via the relation,

cos φ = ∂+X · ∂−X. (32)

Taking into account the constraint |X|2 = 1, we see that there are no other independent SO(4)

invariant quantities that can be constructed out of the fields and their first derivatives. At the
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level of second derivatives we can construct two additional invariants which were absent in
the case of the 2-sphere,

u sin φ = ∂2
+X · K, v sin φ = ∂2

−X · K, (33)

where the components of vector K are given by Ki = εijklXj∂+Xk∂−Xl . The equations of
motion for u, v and φ are derived in [22]. In fact the resulting equations imply that u and v

are not independent and can be eliminated in favour of a new field χ(x, t) as

u = ∂+χ tan

(
φ

2

)
, v = −∂−χ tan

(
φ

2

)
. (34)

The equations of motion for χ and φ can then be written as

∂+∂−φ + sin φ − tan2
(

φ

2

)
sin φ

∂+χ∂−χ = 0, (35)

∂+∂−χ +
1

sin φ
(∂+φ∂−χ + ∂−φ∂+χ) = 0. (36)

In the special case of constant χ they reduce to the usual sine-Gordon equation for φ(x, t).
Finally we can combine the real fields φ and χ to form a complex field ψ = sin(φ/2)

exp( iχ/2), which obeys the equation,

∂+∂−ψ + ψ∗ ∂+ψ∂−ψ

1 − |ψ |2 + ψ(1 − |ψ |2) = 0. (37)

Equation (37) is known as the complex sine-Gordon equation (CsG) [24]. Like the
ordinary sG equation, it is completely integrable and has localized soliton solutions which
undergo factorized scattering. The CsG equation is invariant under a global rotation of the
phase of the complex field: ψ → exp(iν)ψ,ψ∗ → exp(− iν)ψ∗. In addition to momentum
and energy, CsG solitons carry the corresponding conserved U(1) Noether charge. The most
general one soliton solution to (37) is given by

ψ1-soliton = eiμ cos(α) exp( i sin(α)T )

cosh(cos(α)(X − X0))
(38)

with

X = cosh(θ)x − sinh(θ)t, T = cosh(θ)t − sinh(θ)x. (39)

The constant phase μ is irrelevant for our purposes as only the derivatives of the field χ affect
the corresponding string solution. The parameter X0 can be absorbed by a constant translation
of the worldsheet coordinate x and we will set it to zero. The two remaining parameters of the
solution are the rapidity θ of the soliton and an additional real number α which determines the
U(1) charge carried by the soliton.

Taking the limit α → 0, the field φ corresponding to the one-soliton solution (38) reduces
to the kink solution of the ordinary sG equation.

5.5. The giant magnon

It remains to reconstruct the corresponding configuration of the string worldsheet fields X (or
equivalently Z1 and Z2) corresponding to (38) for general values of the rapidity θ and rotation
parameter α.

In this case we have

∂+X · ∂−X = cos(φ) = 1 − 2 cos2(α)

cosh2 (cos(α)X)
. (40)
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Hence the complex coordinates Z1 and Z2 must both solve the linear equation,

∂2Z

∂t2
− ∂2Z

∂x2
+

[
1 − 2 cos2(α)

cosh2 (cos(α)X)

]
Z = 0 (41)

where as above X = cosh(θ)x − sinh(θ)t and we impose the boundary conditions appropriate
for a giant magnon with momentum p,

Z1 → exp
(

it ± i
p

2

)
Z2 → 0, as x → ±∞. (42)

As always the two complex fields obey the constraint |Z1|2 + |Z2|2 = 1. We will find unique
solutions of the linear equation (41) obeying these conditions and then, for self-consistency,
check that they correctly reproduce (40).

It is convenient to express the solution to (41) in terms of the boosted coordinates X and
T. In terms of these variables Z = Z[X, T ] obeys

∂2Z

∂T 2
− ∂2Z

∂X2
+

[
1 − 2 cos2(α)

cosh2 (cos(α)X)

]
Z = 0. (43)

The problem now has the form of a Klein–Gordon equation describing the scattering of a
relativistic particle in one spatial dimension incident on a static potential well. As usual the
general solution of this equation can be written as a linear combination of ‘stationary states’
of the form,

Zω = Fω(X) exp( iωT ). (44)

Rescaling the variables according to

ξ = cos(α)X, f (ξ) = Fω(X), ε =
√

ω2 − 1

cos(α)
, (45)

we find that the function f (ξ) obeys the equation,

− d2f

dξ 2
− 2

cosh2(ξ)
f = ε2f. (46)

Equation (46) coincides with the time-independent Schrödinger equation for a particle in
(a special case of) the Rosen–Morse potential [25],

V (ξ) = −2

cosh2(ξ)
. (47)

The exact spectrum of this problem is known (see e.g. [26]). There is a single normalizable
bound state with energy ε2 = −1 and wavefunction,

f−1(ξ) = 1

cosh(ξ)
(48)

and a continuum of scattering states with ε2 = k2 for k > 0 and wavefunctions,

fk2(ξ) = exp( ikξ) (tanh(ξ) − ik) (49)

with asymptotics

fk2(ξ) → exp

(
ikξ ± i

δ

2

)
(50)

where the scattering phase shift is given as δ = 2 tan−1(1/k).
The general solution to the original linear equation (41) can be constructed as a

linear combination of these bound state and scattering wavefunctions. The particular
solutions corresponding to the worldsheet fields Z1 and Z2 are singled out by the boundary
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conditions (42). In particular, the boundary condition (42) can only be matched by a solution
corresponding to a single scattering mode fk2(ξ),

Z1 = c1fk2 (cos(α)X) exp( iωk2T ), (51)

where ωk2 =
√

k2 cos2(α) + 1. We find that (42) is obeyed provided we set

k = sinh(θ)

cos(α)
(52)

which yields the magnon momentum p = δ = 2 tan−1(1/k). The boundary condition (42)
dictates that Z2 decays at left and right infinity. This is only possible if we identify it with the
solution corresponding to the unique normalizable bound state of the potential (46)

Z2 = c2f−1(cos(α)X) exp( iω−1T ) (53)

with ω−1 = sin(α). Without loss of generality we can choose the constants c1 and c2 to be
real. The condition |Z1|2 + |Z2|2 = 1 then yields

c1 = c2 = 1√
1 + k2

. (54)

To summarize the above discussion the resulting string solution is

Z1 = 1√
1 + k2

(tanh[cos(α)X] − ik) exp( it),

Z2 = 1√
1 + k2

1

cosh[cos(α)X]
exp( i sin(α)T ),

(55)

where X, T and k are defined in (39) and (52) above. One may easily check that this solution,
in addition to obeying the string equation of motion (41) and boundary conditions (42), obeys
the Virasoro constraints and satisfies the self-consistency condition (40).

The full solution (55) depends on two parameters: k and α. We can now evaluate the
conserved charges � − J1 and J2 as a function of these parameters,

� − J1 =
√

λ

π

1

1 + k2

√
1 + k2 cos2(α)

cos(α)
, J2 =

√
λ

π

1

1 + k2
tan(α). (56)

The magnon momentum is identified as p = 2 tan−1(1/k). Eliminating k and α we obtain the
dispersion relation

� − J1 =
√

J 2
2 +

λ

π2
sin2

(p

2

)
. (57)

As required by the boundary conditions the solution has finite � − J1 and the asymptotic
behaviour is

Z1 = X1 + iX2 → exp

(
it ± i

�φ

2

)
as x → ±∞ with �φ = p = 2 tan−1(1/k). The resulting solution thus corresponds to an
open string with endpoints moving on the equator of S2 at the speed of light. The angular
separation between the endpoints is �φ = p. The solution, known as the Dyonic giant
magnon, is shown below in figure 26. The fact that the solution describes an open string
means that it does not actually appear in the spectrum of the IIB theory on AdS5 × S5 which
is a closed string theory. This is directly related to the fact that the N = 4 theory does not
contain a gauge-invariant operator corresponding to a single magnon state of the spin chain:
it is forbidden by the cyclicity of the trace. As in the gauge theory case, we may construct
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Figure 26. The giant magnon.

states with multiple giant magnons, which are allowed provided the total angular separation
of the endpoints �φ = ∑M

i=1 �φi vanishes modulus 2π , and the string is closed.
The time dependence of the solution (55) is also of interest. As in the original HM solution

the constant phase rotation of Z1 with exponent it ensures that the endpoints of the string
move on an equator of the 3-sphere at the speed of light. We can remove this dependence by
changing coordinates from Z1 to Z̃1 = exp(− it)Z1. In the new frame, the string configuration
depends periodically on time through the t-dependence of Z2. The period, T , for this motion is
the time for the solution to come back to itself up to a translation of the worldsheet coordinate
x. From (55) we find

T = 2π
cosh(θ)

sin(α)
. (58)

As we have a periodic classical solution it is natural to define a corresponding action
variable. A leading-order semiclassical quantization can then be performed by restricting the
action variable to integral values according to the Bohr–Sommerfeld condition. Following
[15], the action variable I is defined by the equation,

dI = T
2π

d(� − J1)|p , (59)

where the subscript p indicates that the differential is taken with fixed p. Using (56)–(58)
we obtain simply dI = dJ2 which is consistent with the identification I = J2. This is very
natural as we expect the angular momentum J2 to be integer valued in the quantum theory.

We can now compare the spectrum of excitations at weak and strong coupling. In the
case J2 = 0, the giant magnon dispersion relation becomes

� − J1 =
√

λ

π

∣∣∣sin
(p

2

)∣∣∣ .
This is to be compared with the corresponding one-loop formula coming from the spin chain,

� − J1 = 1 +
λ

2π
sin2

(p

2

)
+ O(λ2).

It is now known that the string theory and gauge theory results are the strong and weak coupling
limits respectively of an exact dispersion relation [16] which gives

� − J1 =
√

1 +
λ

π
sin2

(p

2

)
.

For the general case J2 �= 0, the semiclassical string theory result

� − J1 =
√

J 2
2 +

λ

π
sin2

(p

2

)
33



J. Phys. A: Math. Theor. 42 (2009) 254001 N Dorey

x

x

ϕ

ϕ

2π

−2π

vv

vv

(a) t → −∞

(b) t → +∞

Figure 27. The sine-Gordon Kink K − K̄ scattering solution.

can actually matches the exact bound state dispersion relation (21), provided we identify
J2 = Q as the number of constituent magnons. The formula can also be expanded in powers
of λ reproducing the one loop gauge theory result

� − J1 = Q +
λ

2πQ
sin2

(p

2

)
+ O(λ2).

5.6. Magnon scattering

In this final section, we will examine how factorized scattering emerges on the string theory
side of the correspondence. Integrability of sG and CsG equations manifested by the existence
of exact analytic solutions describing soliton–soliton scattering. In the sG case studied above,
these can be obtained by applying the Backlund transformation to the kink solutions. The
resulting solution corresponds to the scattering of two giant magnons on the string.

KK̄ scattering,

ϕKK̄(x, t) = 4 tan−1

[
sinh

(
vt√
1−v2

)
v cosh

(
x√

1−v2

)] .

To understand the interpretation of this solution we consider the asymptotics at t → ±∞
where it is well approximated as a superposition of a far-separated kink and anti-kink as
shown in figure 27. More precisely we have

ϕKK̄(x, t) → ϕK

(
x + v

(
t ± �T

2

)
√

1 − v2

)
+ ϕK̄

(
x − v

(
t ± �T

2

)
√

1 − v2

)
as t → ±∞, with

�T (v) = 2

v

√
1 − v2 log(v).

Thus the solution describes an incident kink and anti-kink with velocities ∓v, which
collide at t = 0. After the collision the velocities of the two solitons are unchanged and the
only effect of the scattering is a time delay �T which depends on the velocity. A spacetime
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Figure 28. Spacetime picture of K − K̄ scattering.

picture of the scattering is shown in figure 28. The integrability of the sG equation is
reflected in the fact that solitons scatter with no loss of energy into radiation. In semi-classical
quantization the leading order S-matrix for soliton scattering S(p1, p2) = exp( iδ(p1, p2))

can be calculated using the formula
∂δ

∂p
= �T (v).

The resulting scattering phase

δsc(p1, p2) =
√

λ

π

[
cos

(p1

2

)
− cos

(p2

2

)]
log

[
sin2

(
p1−p2

4

)
sin2

(
p1+p2

4

) ]
can be compared with the weak-coupling result described in the previous section,

δ1−loop = 1

i
log

[
1
2 cot

(
p1

2

) − 1
2 cot

(
p2

2

)
+ i

1
2 cot

(
p1

2

) − 1
2 cot

(
p2

2

) − i

]
.

In fact, the exact S-matrix which interpolates between these limits is now known [17, 19, 20].

Similar solutions exist which describe multi-soliton scattering. These can be obtained by
repeated applications of the Backlund transformation. Here integrability implies factorization
into two-body scatterings as shown in figure 29. Total time delay experienced by kink 1,

�Ttotal = �T12 + �T13.

Semiclassical quantization then leads directly to a factorized S-matrix in accord with
integrability. Because of this property, it suffices to compare the asymptotic spectrum and
two-body S-matrix of gauge theory and string theory to demonstrate complete agreement
between spectra (at least in the limit of large operators/strings).

Appendix A. The conformal group

The conformal group in four dimensions is SO(4, 2) whose elements are real 6 × 6 matrices,
M, of unit determinant obeying

MT KM = K
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Figure 29. Three-soliton scattering.

(a) (b)

Figure 30. (a) An open string and (b) a closed string.

where K is the metric on R
4,2,

K = diag [−1,−1, +1, +1, +1, +1] .

The commutation relations for the generators given in the text are

[Mμν,Mρσ ] = − iημρMνσ ± permutations

[Mμν, Pρ] = − i(ημρPν − ηνρPμ)

[Mμν,Kρ] = − i(ημρKν − ηνρKμ) (A.1)

[Pμ,Kν] = 2iMμν − 2iημνD

[Mμν,D] = 0, [D,Pμ] = − iPμ, [D,Kμ] = iKμ

where ημν is the Minkowski metric.

Appendix B. String theory basics

For a more detailed treatment see section 2 of [21] (in particular section 2.1).
String theory describes the dynamics of one-dimensional objects corresponding to either

open or closed strings.
Here we will primarily be concerned with closed strings.
As the string moves it sweeps out a two-dimensional surface, � called a worldsheet. We

can parametrize the worldsheet by introducing coordinates σ ∼ σ + 2π and τ as shown in
figure 31.

It is often useful to work in terms of lightcone coordinates and the corresponding
derivatives,

σ± = τ ± σ, ∂± = 1
2 (∂τ ± ∂σ ).
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σ

τ

Figure A1. The string worldsheet.

The string moves in a (D + 1)-dimensional spacetime M with coordinates XM,M =
0, 1, . . . ,D and metric tensor GMN(X).

The embedding of the string in spacetime is described by a map � → M, or, in
coordinates,

(σ, τ ) �→ XM(σ, τ)

and string motion is described by the Polyakov–Brink–DiVechia–Howe action,

S = T

2

∫
d2σGMN(X)∂+X

M∂−XN (B.1)

subject to the closed string boundary conditions,

XM(σ + 2π, τ) = XM(σ, τ).

In these conventions the spacetime coordinates have the dimension of length [XM ] = −1 and
the constant T, with [T ] = 2, is the string tension. It is also conventional to write

T = 1

2πα′ ,

where α′ is the square of the characteristic length scale of the string.
There are two important additional conditions on string motion which come from the

gauge invariance of the string associated with redefinitions of the worldsheet coordinates:

• Physical motions of the string must obey the Virasoro constraint,

GMN(X)∂±XM∂±XN = 0.

• The action (B.1) itself has a residual gauge invariance under redefinitions of the
coordinates of the form,

σ+ → f+ (σ+) σ− → f− (σ−) .
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This gauge symmetry can be fixed in many different ways. Here we will focus on the
static gauge where we impose the condition,

X0 = κτ.

The classical equation of motion of the string is obtained by varying the action (B.1). In
the special case of flat space, M = R

D,1, we replace GMN(X) by the (D + 1)-dimensional
Minkowski metric ηMN and the action becomes

S = T

2

∫
d2σηMN∂+X

M∂−XN, (B.2)

which is quadratic in the worldsheet fields XM(σ, τ). Thus the resulting equation of motion
is linear

∂+∂−XM = 0

for M = 0, 1, . . . , D. This is trivially solved by writing each worldsheet field as a sum of
left- and right-movers,

XM(σ, τ) = XM
+ (σ+) + XM

− (σ−) .

The general solution subject to closed string boundary conditions reads

XM = xM + 2α′pM +
∑
n�=0

1

n
αM

n exp (− inσ+) +
∑
n�=0

1

n
α̃M

n exp (−inσ−)

• Here xM and pM correspond to the COM position and energy–momentum of the string
in R

D,1.
• The remaining parameters of the solution, αM

n and α̃M
n are known as left- and right-moving

oscillator coordinates. The index n labels the different modes or harmonics of the string.

We now return to the general case of a curved spacetime manifold of radius R. The action

S = T

2

∫
d2σGMN(X)∂+X

M∂−XN

is no longer quadratic in the fields and thus represents an interacting two-dimensional field
theory. The corresponding equation of motion is therefore nonlinear. To identify the coupling
of the interacting worldsheet theory we rescale the spacetime coordinates by a factor of the
radius R,

XM → X̃M = XM

R

so that the rescaled coordinates are dimensionless:
[
X̃M

] = 0. In terms of the new coordinates
the action reads

S = 1

g2
σ

∫
d2σGMN(X̃)∂+X̃

M∂−X̃N

with coupling

gσ =
√

2

T R
=

√
4πα′

R
.

For the special case of M = AdS5 × S5, AdS/CFT provides the identification g2
σ = 4π/

√
λ.
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